Table 6. Coordination of U atoms

			Number of equivalent
Compound	Atom(1)-atom(2)	Distance	distances

A list of U-O distances appears in Table 6. The U atoms in all compounds are 6-coordinated except in CaUO_{4}. In this compound the U-atom coordination is eight. The alkaline-earth metals are in most cases 7coordinated, except in CaUO_{4}, where the Ca atom is 5 -coordinated, and in $\mathrm{Sr}_{3} \mathrm{UO}_{6}$ and $\mathrm{Ca}_{3} \mathrm{UO}_{6}$, where two of the three alkaline-earth-metal atoms are 6-coordinated.

The authors wish to express their gratitude to Dr E.H.P. Cordfunke for preparing the samples and to Dr P. Boldrini for his assistance during the initial stages of the $\mathrm{Sr}_{2} \mathrm{UO}_{5}$ investigation.

References

Cordfunke, E. H. P \& Loopstra, B. O. (1967). J. Inorg. Nucl. Chem. 29, 51.
International Tables for X-ray Crystallography (1962). Vol. III, p. 229-230. Birmingham: Kynoch Press.
Ippolitova, E. A., Simanov, I. P., Kovba, L. M., Pollinina, G. P. \& Bereznikova, I. A. (1959). Radiokhimiya, 1, 660.

Rietveld, H. M. (1966). Acta Cryst. 20, 508.
Rietveld, H. M. (1967). Acta Cryst. 22, 151.
Rietveld, H. M. (1968). Reactor Centrum Nederland Report no. 104.
Samson, S. \& Sillen, L. G. (1947). Ark. Kemi Min. Geol. 25A, nr. 21.
Sawyer, J. O. (1963). J. Inorg. Nucl. Chem. 25, 899.
Willis, B. T. M. (1967). Private communication.
Zachariasen, W. H. (1948). Acta Cryst. 1, 281.

Crystal Structure of $\mathbf{Y}_{2} \mathrm{SiBe}_{2} \mathbf{O}_{7}$

By S.F.Bartram
General Electric Company, Nuclear Systems Programs, Cincinnati, Ohio 45215, U.S.A.

(Received 15 May 1968)

Diyttrium silicon beryllate, $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$, is tetragonal with $a=7.283 \pm 0.002, c=4.755 \pm 0.001 \AA, Z=2$. Refinement of its crystal structure in space group $P \overline{4} 2_{1} m$ by full-matrix least-squares calculations gave $R=0.096$. Yttrium atoms lie within distorted square oxygen antiprisms and silicon atoms in isolated SiO_{4} tetrahedra. Beryllium atoms occupy distorted tetrahedra linked at one corner to form double $\mathrm{Be}_{2} \mathrm{O}_{7}$ pyramids oriented upward or downward relative to the c axis. $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$ is isostructural with silicate minerals of the melilite family, such as $\mathrm{Ca}_{2} \mathrm{SiAl}_{2} \mathrm{O}_{7}$ and $\mathrm{Ca}_{2} \mathrm{MgSi}_{2} \mathrm{O}_{7}$. The $\mathrm{M}_{2} \mathrm{O}_{7}$ group is capable of accepting various small ions of different valence, giving this structural arrangement a remarkable versatility.

Introduction

A new complex oxide of Y, Si, and Be was first observed during studies on the $\mathrm{BeO}-\mathrm{Y}_{2} \mathrm{O}_{3}$ binary phase diagram. Its composition was determined by crystallographic analysis and by analogy with isostructural minerals to
be $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$. It often coexisted with $\mathrm{Y}_{2} \mathrm{BeO}_{4}$ whose crystal structure has recently been determined by Harris \& Yakel (1967).

Melilite is a complex silicate mineral which varies in composition from åkermanite, $\mathrm{Ca}_{2} \mathrm{MgSi}_{2} \mathrm{O}_{7}$, to gehlenite, $\mathrm{Ca}_{2} \mathrm{SiAl}_{2} \mathrm{O}_{7}$. Its crystal structure was first eluci-
dated by Warren (1930) and Raaz (1930); a more accurate determination was made later by Smith (1953). There are many other natural and synthetic members of this family. It is the purpose of this paper to establish the structural relationship of $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$ to these minerals and to compare its metal coordination polyhedra with similar compounds.

Experimental

Single crystals of $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$ found on the surfaces of extruded $\mathrm{BeO}-\mathrm{Y}_{2} \mathrm{O}_{3}$ rods after firing in a Globar furnace insulated with silica brick were apparently formed by the vapor transport of SiO_{2}. The composition of these pale yellow crystals was determined by direct synthesis. A pellet containing the correct proportion of yttrium, silicon, and beryllium oxides was heated in air for 100 hours at $1350^{\circ} \mathrm{C}$; this heat treatment was repeated after grinding and re-pressing. X-ray powder diffraction analysis of the sintered product indicated the formation of $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$ along with slight traces of $\mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{Y}_{2} \mathrm{BeO}_{4}$, and cristobalite SiO_{2}.

A few small crystals scraped from the surfaces of a sintered rod were rather poorly developed and had rounded edges. A suitable crystal approximately $0.15 \times 0.15 \times 0.02 \mathrm{~mm}$ was found to be oriented with the [001] direction perpendicular to the plate. Threedimensional intensity data were obtained from multiple film equi-inclination photographs about the b axis ($k=0$ to 4), using a non-integrating Weissenberg camera with $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.5418 \AA$). Intensities were visually estimated by comparison with a calibrated gray scale. Additional intensity data were obtained from a second crystal of similar size for the zero, first, and second layers during rotation about [001] and also layers zero through four during rotation about [101]. Out of 198 possible independent reflections, 158 were recorded several times on different photographs. The observed intensities were corrected for Lorentz and polarization effects, correlated and averaged.

The high linear absorption coefficient ($\mu=351 \mathrm{~cm}^{-1}$) made it necessary to apply a correction. A computer program for anisotropic corrections was not available, so the crystal volumes were assumed to be spherical and an arbitrary correction was applied using Bond's spherical values for $\mu R=1 \cdot 7$ (International Tables for X-ray Crystallography, 1959).

Table 1. Crystallographic and optical ${ }^{*}$ data for $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$
Tetragonal - space group $P \overline{4} 2_{1} m$
$a=7.283 \pm 0.002 \AA$
$c=4.755 \pm 0.001 \AA$
$Z=2$
$D_{\text {calc }}=4.42 \mathrm{~g} . \mathrm{cm}^{-3}$
Volume $=252.29 \AA^{3}$
Uniaxial negative
$n_{o}=1.83, n_{E}=1.80$

* McVay (1961).

Crystal data

Approximate cell dimensions from single-crystal rotation photographs were subsequently refined by recording the high-angle reflections with a powder diffractometer and copper radiation. Forty-one resolved lines in the 2θ region from $102^{\circ}-165^{\circ}$ were used to calculate the lattice parameters ($\mathrm{Cu} K \alpha_{1}=1.54050 \AA$, $\mathrm{Cu} K \alpha_{2}=1.54434 \AA$) with the computer program of Mueller, Heaton \& Miller (1960). These results and other physical constants for $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$ are given in Table 1.

Structure determination

The only systematic absences were odd $h 00$ reflections; this limits the possible space groups to $P 42_{1} 2$ and $P \overline{4} 2_{1} m$ with four yttrium atoms occupying special positions. Since all fourfold sites in $P 42_{1} 2$ give rise to additional absences which were not observed, $P \overline{4} 2{ }_{1} m$ was chosen. This choice was verified later in the structure determination. All computations were made using the X-ray 63 crystallographic computing system by Stewart \& High (1964).

To begin with, the heavy yttrium atoms were located by means of a three-dimensional Patterson synthesis in the $4(e)$ sites at $x, \frac{1}{2}+x, z$, where $x \simeq \frac{1}{6}$ and $z=0$ or $\frac{1}{2}$. A three-dimensional Fourier synthesis was calculated by letting the yttrium atoms in these positions determine the signs of the $\left|F_{o}\right|$ values. At this point, the agreement index was $R=0 \cdot 35$. Atomic scattering factors for this and all subsequent calculations were taken from Cromer \& Waber (1964) for $\mathrm{Y}^{3+}, \mathrm{Si}^{4+}$, and Be^{2+} and from Tokonami (1965) for O^{2-}.

From the electron density maps and a consideration of the $\mathrm{Y}-\mathrm{O}$ bond lengths, all fourteen oxygen atoms were located in the following approximate positions:

	x	y	z
$\mathrm{O}(1)$ in $8(f)$	0.083	0.167	0.750
$\mathrm{O}(2)$ in 4(e)	0.333	0.833	0.750
$\mathrm{O}(3)$ in 2(c)	0.000	0.500	0.750

Structure-factor and least-squares calculations reduced R to 0.22 when the scale factor, positional parameters and isotropic temperature factors were allowed to vary.

When the structural relationship between $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$ and the melilite minerals was recognized, the silicon and beryllium atoms were placed in the Zn^{2+} and Si^{4+} sites, respectively, given by Warren \& Trautz (1930) for $\mathrm{Ca}_{2} \mathrm{ZnSi}_{2} \mathrm{O}_{7}$. Refinement was carried out with the X-ray 63 system version of the Busing, Martin \& Levy (1962) full-matrix least-squares $O R F L S$ program and proceeded smoothly to an R value of $0 \cdot 108$. A final refinement was made with the yttrium atoms fixed, but the thermal parameters of Y^{3+} and Si^{4+} as well as the positional and thermal parameters of Be^{2+} and O^{-2} were allowed to vary. Five of the strongest reflections appeared to be affected by extinction and were given zero weight. All others were weighted according to the scheme $w=50 / F_{o}$ when $F_{o}>50$ and $w=1$ when
$F_{o} \leq 50$. Unobserved reflections were omitted from the refinement when the calculated structure factors were less than the minimum observable value.

The results from the last least-squares cycle are presented in Table 2. The average shift/error ratio was 0.003 for this cycle. The structure factors calculated from these parameters are compared with the observed values in Table 3. The final R value, omitting unobserved reflections, was 0.096 . A three-dimensional difference Fourier computed with the final parameters was essentially featureless except for small residual peaks of about $0 \cdot 8$ electrons at the yttrium positions.

Discussion

The interatomic distances and bond angles for the coordination polyhedra in $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$ are listed in Table 4. A drawing of the structure projected down the c axis is shown in Fig.1. This clearly shows its structural similarity to $\mathrm{Ca}_{2} \mathrm{ZnSi}_{2} \mathrm{O}_{7}$ and other materials of the melilite family. The most interesting feature about $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$ is the fact that Be^{2+} ions occupy the Si^{4+} sites to form a $\left[\mathrm{Be}_{2} \mathrm{O}_{7}\right]^{10-}$ double pyramid linked

Fig. 1. Projection of the $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$ structure on the c axis. The Y-O bonds alternate up (u) and down (d). Apical oxygen atoms pointing downward are dashed.
at a corner oxygen. Although the substitution of beryllium for silicon in the $\mathrm{M}_{2} \mathrm{O}_{7}$ group has been suspected for some time, the results reported here unequivocally demonstrate the existence of this arrangement. It should be mentioned that Cannillo, Giuseppetti \& Tazzoli (1967) have reported a $\left[(\mathrm{Si}, \mathrm{Be}) \mathrm{O}_{6} \mathrm{~F}\right]^{7-}$ double tetrahedron in leucophanite, a mineral closely related to melilite.

The coordination polyhedron around the yttrium ion is a distorted square Archimedean antiprism. There are six close yttrium-oxygen contacts ranging from $2 \cdot 28 \AA$ to $2 \cdot 40 \AA$, plus two longer distances of $2 \cdot 61 \AA$. In melilite, $\mathrm{Ca}_{2} \mathrm{MgSi}_{2} \mathrm{O}_{7}$, the $\mathrm{Ca}-\mathrm{O}$ separations vary from $2.42 \AA$ to $2.75 \AA$, distances which are $0.14 \AA$ larger than the maximum and minimum $\mathrm{Y}-\mathrm{O}$ bond lengths found in $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$. The $\mathrm{O}-\mathrm{Y}-\mathrm{O}$ acute angles

Table 3. Observed and calculated structure factors ($\times 10$)
$\mathrm{E}=$ extinction, $\mathrm{L}=$ less than.

Table 2. Final atomic parameters for $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}{ }^{*}$

Atom	Position	x	y	z	B
Y	$4(e)$	$0.1595(6)$	$0.6595(6)$	$0.4873(7)$	$0.79(8)$
Si	$2(a)$	0.000	0.000	0.000	$0.51(20)$
Be	$4(e)$	$0.363(13)$	$0.863(13)$	$0.031(14)$	$1.94(97)$
$\mathrm{O}(1)$	$8(f)$	$0.0823(28)$	$0.1664(32)$	$0.7928(46)$	$0.94(31)$
$\mathrm{O}(2)$	$4(e)$	$0.3561(56)$	$0.8561(56)$	$0.7053(55)$	$0.54(40)$
$\mathrm{O}(3)$	$2(c)$	0.0000	0.5000	$0.8275(71)$	$0.02(52)$

[^0]vary from 61° to 87°, the mean being 78°, compared to $\mathrm{O}-\mathrm{Ca}-\mathrm{O}$ angles of 59° to 83°, with a mean of 73°. Very similar calcium and yttrium polyhedra are found in the minerals herderite and gadolinite. Herderite of composition $\mathrm{CaBePO}_{4} \mathrm{~F}$ is structurally related to $\mathrm{Fe}_{1 / 2} \mathrm{YBeSiO}_{4} \mathrm{O}$ (Pavlov \& Belov, 1960) by replacing Ca^{2+} with $\mathrm{Y}^{3+}, \mathrm{PO}_{4}^{3-}$ with SiO_{4}^{4-}, and F^{-} with O^{2-}. In order to satisfy the valence requirements, Fe^{2+} ions occupy sites within rings of YO_{8} polyhedra; these are vacant in the herderite structure. Relative bond lengths in the Ca and Y distorted cubic antiprism are shown in Table 5. A comparison of these data with those for $\mathrm{Ca}_{2} \mathrm{MgSi}_{2} \mathrm{O}_{7}$ and $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$ show the close relationship between their structural arrangements. In all of these compounds, the eightfold coordinated Ca or Y antiprisms are linked through oxygen (or F in herderite) atoms to Be or Si tetrahedra.

The nearly ideal SiO_{4} tetrahedra in $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$ has four equal Si-O distances of $1.67 \AA$; this is somewhat greater than the average value of $1.61 \AA$ for silicates. Similar isolated SiO_{4} tetrahedra in meliphanite, a mineral of composition $\mathrm{Ca}(\mathrm{Na}, \mathrm{Ca}) \mathrm{BeSi}_{2} \mathrm{O}_{6} \mathrm{~F}$ (Dal Negro, Rossi \& Ungaretti, 1967) have Si-O distances ranging from $1.64 \AA$ to $1.68 \AA$.

The double pyramids of $\mathrm{Be}_{2} \mathrm{O}_{7}$ are oriented upward and downward relative to the c axis; they are a rather unusual grouping for the known minerals of beryllium. These tetrahedra appear to be distorted with two Be-O distances of $1 \cdot 55-1.56 \AA$ and two others of $1.71 \AA$ (average $1 \cdot 63 \AA$). The short contacts are similar to $\mathrm{Be}-\mathrm{O}$ separations of $1.55 \AA$ in a $\mathrm{BeO}_{3} \mathrm{~F}$ tetrahedron in herderite (Pavlov \& Belov, 1960) and the $1.56 \AA$ Be-O distances found by Harris \& Yakel (1966) in calcium beryllate. The average $\mathrm{Be}-\mathrm{O}$ distance of $1.63 \AA$ is identical with that reported by Farrell, Fang \& Newnham (1963) for all Be-O contacts in chrysoberyl $\mathrm{BeAl}_{2} \mathrm{O}_{4}$.

The distortion of the $\mathrm{Be}_{2} \mathrm{O}_{7}$ double tetrahedra and the short $\mathrm{O}-\mathrm{O}$ distances of $2.51 \AA$ and $2.59 \AA$ can

Table 5. Relative bond lengths (\AA)

Herderite		Gadolinite*	
$\mathrm{Ca}-\mathrm{O}(1)$	2-40, $2 \cdot 40$	$\mathrm{Y}-\mathrm{O}(1)$	2.25, $2 \cdot 46$
$\mathrm{Ca}-\mathrm{O}(2)$	$2 \cdot 44$	$\mathrm{Y}-\mathrm{O}(2)$	2.31
$\mathrm{Ca}-\mathrm{O}(3)$	2.61, $2 \cdot 70$	$\mathrm{Y}-\mathrm{O}(3)$	2.57, $2 \cdot 61$
$\mathrm{Ca}-\mathrm{O}(4)$	$2 \cdot 44$	$\mathrm{Y}-\mathrm{O}(4)$	2.30
$\mathrm{Ca}-\mathrm{F}$	2.58, $2 \cdot 71$	$\mathrm{Y}-\mathrm{O}(5)$	2.50, $2 \cdot 57$
Average	$2 \cdot 535$	Average	$2 \cdot 446$

* Calculated from data of Pavlov \& Belov (1960).

Table 4. Interatomic distances and bond angles in $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$

Interatomic distances (\AA)
Distorted square antiprism

(2) $\mathrm{Y}-\mathrm{O}(1)$	$2 \cdot 305$ (22)
(1) $\mathrm{Y}-\mathrm{O}\left(2^{\prime}\right)$	$2 \cdot 275$ (38)
(2) $\mathrm{Y}-\mathrm{O}(2)$	$2 \cdot 395$ (39)
(1) $\mathrm{Y}-\mathrm{O}(3)$	$2 \cdot 306$ (24)
(2) $\mathrm{Y}-\mathrm{O}\left(1^{\prime}\right)$	$2 \cdot 612$ (22)
Average	$2 \cdot 401$
(2) $\mathrm{O}(1)-\mathrm{O}(3)$	$2 \cdot 51$ (2)
(1) $\mathrm{O}(1)-\mathrm{O}(1)$	2.59 (3)
(2) $\mathrm{O}(1)-\mathrm{O}\left(2^{\prime}\right)$	2.78 (4)
(2) $\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}(2)$	2.78 (4)
(2) $\mathrm{O}(2)-\mathrm{O}(3)$	2.94 (4)
(1) $\mathrm{O}(2)-\mathrm{O}(2)$	$2 \cdot 97$ (6)
(2) $\mathrm{O}(1)-\mathrm{O}(2)$	3.04 (5)
(2) $\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$	$3 \cdot 22$ (5)
(2) $\mathrm{O}(1)-\mathrm{O}\left(1^{\prime}\right)$	$3 \cdot 38$ (3)
(1) $\mathrm{O}\left(2^{\prime}\right)-\mathrm{O}(3)$	$3 \cdot 71$ (4)

Tetrahedron
(2) $\mathrm{Si}-\mathrm{O}(1) \quad 1.67$ (2)
(2) $\mathrm{Si}-\mathrm{O}\left(1^{\prime}\right) \quad 1.67$ (2)
(1) $\mathrm{O}(1)-\mathrm{O}(1) \quad 2.70$ (3)
(1) $\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right) \quad 2.70(3)$
(4) $\mathrm{O}(1)-\mathrm{O}\left(1^{\prime}\right) \quad 2.75$ (3)

Tetrahedron

(1) $\mathrm{Be}-\mathrm{O}(2)$	$1.55(7)$
(1) $\mathrm{Be}-\mathrm{O}(3)$	1.56 (9)
(2) $\mathrm{Be} \mathrm{O}\left(1^{\prime}\right)$	$1.71(9)$
Average	1.63
(2) $\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}(3)$	$2.51(2)$
(1) $\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	$2.59(3)$
(1) $\mathrm{O}(2)-\mathrm{O}(3)$	$2.67(4)$
(2) $\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}(2)$	$2.78(4)$

Interatomic angles (${ }^{\circ}$)

(1) $\mathrm{O}(1)-\mathrm{Y}-\mathrm{O}(1)$	$68 \cdot 3$ (0.8)
(2) $\mathrm{O}(1)-\mathrm{Y}-\mathrm{O}\left(1^{\prime}\right)$	149.4 (0.7)
(2) $\mathrm{O}(1)-\mathrm{Y}-\mathrm{O}\left(1^{\prime}\right)$	86.6 (0.7)
(2) $\mathrm{O}(1)-\mathrm{Y}-\mathrm{O}(2)$	$122 \cdot 2$ (0.9)
(2) $\mathrm{O}(1)-\mathrm{Y}-\mathrm{O}(2)$	80.7 (1.0)
(2) $\mathrm{O}(1)-\mathrm{Y}-\mathrm{O}\left(2^{\prime}\right)$	$74 \cdot 7$ (1.0)
(2) $\mathrm{O}(1)-\mathrm{Y}-\mathrm{O}(3)$	$145 \cdot 8$ (0.6)
(1) $\mathrm{O}\left(1^{\prime}\right)-\mathrm{Y}-\mathrm{O}\left(1^{\prime}\right)$	$110 \cdot 2$ (0.7)
(2) $\mathrm{O}(1)-\mathrm{Y}-\mathrm{O}(2)$	67.3 (0.9)
(2) $\mathrm{O}\left(1^{\prime}\right)-\mathrm{Y}-\mathrm{O}(2)$	$129 \cdot 0$ (1.0)
(2) $\mathrm{O}\left(1^{\prime}\right)-\mathrm{Y}-\mathrm{O}\left(2^{\prime}\right)$	82.3 (1.0)
(2) $\mathrm{O}\left(1^{\prime}\right)-\mathrm{Y}-\mathrm{O}(3)$	61.0 (0.5)
(1) $\mathrm{O}(2)-\mathrm{Y}-\mathrm{O}(2)$	76.5 (1.4)
(2) $\mathrm{O}(2)-\mathrm{Y}-\mathrm{O}\left(2^{\prime}\right)$	$141 \cdot 7$ (1.4)
(2) $\mathrm{O}(2)-\mathrm{Y}-\mathrm{O}(3)$	77.3 (0.9)
(1) $\mathrm{O}\left(2^{\prime}\right)-\mathrm{Y}-\mathrm{O}(3)$	108.3 (1.0)

(1) $\mathrm{O}(1)-\mathrm{Si}-\mathrm{O}(1)$	$107 \cdot 8(1 \cdot 1)$
(1) $\mathrm{O}\left(1^{1}\right)-\mathrm{Si}-\mathrm{O}\left(1^{\prime}\right)$	$107 \cdot 8(1 \cdot 1)$
(4) $\mathrm{O}(1)-\mathrm{Si}-\mathrm{O}\left(1^{\prime}\right)$	$110 \cdot 3(1 \cdot 0)$

(1) $\mathrm{O}\left(1^{\prime}\right)-\mathrm{Be}-\mathrm{O}\left(1^{\prime}\right)$	$98 \cdot 8(4 \cdot 0)$
(2) $\mathrm{O}\left(1^{\prime}\right)-\mathrm{Be}-\mathrm{O}(2)$	$118 \cdot 0(5 \cdot 6)$
(2) $\mathrm{O}\left(1^{\prime}\right)-\mathrm{Be}-\mathrm{O}(3)$	$100 \cdot 2(4 \cdot 4)$
(1) $\mathrm{O}(2)-\mathrm{Be}-\mathrm{O}(3)$	$118 \cdot 0(5 \cdot 7)$

readily be explained on the basis of Pauling's rule which states that shared edges of coordination polyhedra are shortened while unshared edges are correspondingly lengthened. The three short $\mathrm{O}-\mathrm{O}$ edges are shared by the Be and Y groups.

The melilite structure is remarkably versatile. Theoretical end members of this mineral group are gehlenite, $\mathrm{Ca}_{2} \mathrm{SiAl}_{2} \mathrm{O}_{7}$, and åkermanite, $\mathrm{Ca}_{2} \mathrm{MgSi}_{2} \mathrm{O}_{7}$. When sodium and potassium are substituted for calcium, the charge deficiency is compensated for by the replacement of Al^{3+} with Si^{4+} in gehlenite or the substitution of Al^{3+} for Mg^{2+} in åkermanite. The introduction of Be^{2+} for Mg^{2+} yields the rare mineral gugiaite, $\mathrm{Ca}_{2} \mathrm{BeSi}_{2} \mathrm{O}_{7}$, as reported by Peng, Tsao \& Chou (1962). When a trivalent ion such as Y^{3+} occupies the Ca^{2+} positions, the charge balance can be maintained by the introduction of additional Be^{2+} ions. The end result of such substitutions gives rise to the new compound $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$. The transition of the $\mathrm{M}_{2} \mathrm{O}_{7}$ double tetrahedra from $\mathrm{Si}_{2} \mathrm{O}_{7}^{6-}$ to $\mathrm{Al}_{2} \mathrm{O}_{7}^{8-}$ to $\mathrm{Be}_{2} \mathrm{O}_{7}^{10-}$ and all intermediate combinations of these three indicates the wide latitude of possible compositions.

Many other silicate compounds having the melilite or a closely related structure are known. Brisi \& Abbatista (1960) have synthesized $\mathrm{Sr}_{2} \mathrm{MnSi}_{2} \mathrm{O}_{7}$ and $\mathrm{Sr}_{2} \mathrm{FeSi}_{2} \mathrm{O}_{7}$. More recently the new mineral fresnoite of composition $\mathrm{Ba}_{2}(\mathrm{TiO}) \mathrm{Si}_{2} \mathrm{O}_{7}$ was shown by Moore \& Louisnathan (1967) to have a structure very similar to melilite, except that the $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups all point in the same direction and the Ti coordination polyhedron is a square pyramid instead of the usual tetrahedron. Recent structural determinations on the minerals leucophanite (Cannillo, Giuseppetti \& Tazzoli, 1967) and meliphanite (Dal Negro, Rossi \& Ungaretti, 1967) demonstrate their remarkable similarity to melilite.

It seems quite likely that a series of solid solutions exists from $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$ to $\mathrm{Y}_{2} \mathrm{BeAl}_{2} \mathrm{O}_{7}$ as end members, but no attempt has yet been made to prepare the latter compound. At any rate, it is obvious that a wide variety of new compounds can be made by the substitution of
the trivalent rare earth ions for Y^{3+} in $\mathrm{Y}_{2} \mathrm{SiBe}_{2} \mathrm{O}_{7}$. Preliminary experiments indicate that a $1: 1$ ratio of certain monovalent (Na, K) and trivalent rare earth ($\mathrm{Sm}, \mathrm{Eu}, \mathrm{Dy}$) ions can be substituted for part of the Ca^{2+} in $\mathrm{Ca}_{2} \mathrm{ZnSi}_{2} \mathrm{O}_{7}$. This development opens the way to the synthesis of innumerable compounds having possible technical applications.

References

Brisi, C. \& Abbattista, F. (1960). Atti Accad. Sci. Torino, 95, 263.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cannillo, E., Giuseppetti, G. \& Tazzoli, V. (1967). Acta Cryst. 23, 255.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Dal Negro, A., Rossi, G. \& Ungaretti, L. (1967). Acta Cryst. 23, 260.
Farrell, E. F., Fang, J. H. \& Newnham, R. E. (1963). Amer. Min. 48, 804.
Harris, L. A. \& Yakel, H. L. (1966). Acta Cryst. 20, 295.
Harris, L. A. \& Yakel, H. L. (1967). Acta Cryst. 22, 354.
International Tables for X-ray Crystallography (1959). Vol.
II. Birmingham: Kynoch Press.

McVay, T. N. (1961). Private communication.
Moore, P. B. \& Louisnathan, J. (1967). Science, 156, 1361.

Mueller, M. H., Heaton, L. \& Miller, K. T. (1960). Acta Cryst. 13, 838.
Pavlov, P. V. \& Belov, N. V. (1960). Soviet Phys. Crystallography, 4, 300.
Peng, C.-J., Tsao, R.-L. \& Chou, Z.-R. (1962). Scientia Sinica, 11, 977.
Raaz, F. (1930). Akad. Wiss. Wien, 139, 645.
Smith, J. V. (1953). Amer. Min. 38, 643.
Stewart, J. M. \& High, D. F. (1964). Abstracts A.C.A. Bozeman Meeting, B-13, p. 29.
Tokonami, M. (1965). Acta Cryst. 19, 486.
Warren, B. E. \& Trautz, O. R. (1930). Z. Kristallogr. 75, 525.

Warren, B. E. (1930). Z. Kristallogr. 74, 131.

[^0]: * Numbers in the parentheses in all tables are estimated standard deviations in the least significant digits.

